Tag Archives: Blender

Tour of my 3D Printed Houses

Greetings! I am starting to build up quite a collection of 3D Printed buildings! Today I thought I would give you a little tour of them and my design process and share some of my design guidelines and tips.

I’m from Prince WIlliam County Virginia which is outside of Washington, DC. With the exception one gazebo from New York, all my buildings hail from Prince William County, Virginia and most of those right smack from my town, Occoquan. So far, I have

  • Mamie Davis Gazebo in Occoquan, Virginia
  • The National Museum of the United States Marine Corps from Quantico
  • Mill House Museum in Occoquan, Virginia
  • Rockledge Mansion from Occoquan Virginia
  • And then, a custom piece, My Old Neighbor’s House, Occoquan Virginia.

All of these I modeled in Blender and they all start with one thing.

Reference Images
I go out and take reference images. In the case of my neighbor’s house, the prints were a gift and I needed to exercise stealth, so I actually tromped through the woods to snag some pictures of the back of the house. In the case of the Rockledge Mansion, I emailed the home’s owner which allowed me to open up a dialogue with them and I scored an amazing tour of the outside and the inside on the mansion.

Front

If I needed to supplement my own images, I found Flickr and Google Streetview to be a great resource for finding images of the more famous buildings

And…. there were two cases, where I really needed an aerial view to really get a good grasp of the building. The National Museum of the United States Marine Corps is a great example of that. I had all these side images and I just still could not figure out the geometry of the building. Something wasn’t right. Google Earth to the rescue! The aerial image was the missing piece I needed and suddenly everything clicked together.

Google Earth FTW

Base Model
Blender does have the ability where I can create what’s called an Empty and import in an image. I can rotate these, scale them, make them translucent, so it is very helpful for me as I’m trying to get the proportions of my base shapes right.

Detailing
With the detailing, I have done it a very formal way where my windows and my doors are actually a part of the base model. I used a tool called Loop Cut and Slide to make segments in my house where I’m going to put my windows and doors and then I extrude and subdivide accordingly. What I’ve decided I preferred is do model these details as separate objects. I’ll have Window Model, a Door Model, a Light model, A Railing model. I rather enjoy how easy it is to copy and paste that way.

Tip – When you are doing separate models with your detailing (and you aren’t going to do formal Boolean Unions in Blender), you want to make sure they are exactly flush with the base house. At least in Simplify 3D, if there is overlap, Simplify 3D will leave gaps between the two objects– whereas if you have them lined up exactly, you can be super lazy in Blender and Simplify 3D will recognize them as objects that should be one and slice accordingly.

Detailing Design Guidelines
With my detailing, I tend to keep them 0.3mm – 0.5mm high. With my 0.35mm and 0.40mm nozzles, those “90 degree overhangs” have no trouble on my printers, don’t need supports and still render very well in the final print.

Detailing Tour – Windows
Like most things the window detailing is about 0.3mm – 0.5mm high. In my neighbor’s house, for example, the panes are 0.4mm high and then the shutters are another 0.1mm above that.

Window Sizing

Tip – Slice as you go
When I’m working with small details and I want to make sure they translate, one thing I do is slice as I go. A perfect example of this is window panes. My Mill House Museum, the windows came out fine on a Shapeways fancy Sand Stone Printer. When I went and printed it on my FFF printer, I noted the vertical panes were too thin so the printer didn’t bother with them. In subsequent models, I’ll preslice sections to see how it is going to look on my intended printer.

If you don’t slice as you go and you find some missing details, there are options. In Simplify3D, you can try to adjust Horizontal Size Compensation (It’s under the Other tab) to get a better slice.

Horizontal Size Compensation

Detailing Tour – Outdoor Lights, Bay Windows, Garage Overhangs
I modeled the light, but there was deviation from real life— if you look at it from the side, I taper the bottom up– I give it a nice 45 degree angle to help with the overhangs. I did the same thing with the Bay Window and also you’ll see a small triangular wedge between the car port and a screened in porch. This is just to give the printer some solid overhangs to work with.

Outdoor Lights

Detailing Tour – Railings
The biggest trick to the railings is coming up with the dimensions with the slats. I didn’t want something too delicate. I have found 0.65 – 0.85mm to work.

Railing Mrked U

And I reused through measurements on my neighbor’s house. I just got and pasted to get their detailing for their screened in porches.

Reusing Railings

Detailing Tour – Supporting Posts
When I got to my neighbor’s house, I had some posts that would be supporting an awning. I went ahead and increased that to be over 2mm thick on each side so there was more strength and stability.

Awning Posts

Detailing Tour – Awning Hack
And with the awnings, I wanted to print those without supports. What I ended up doing there is I had two small layers connecting the main house with the posts. My very own support beams. They were just 0.5mm high which meant my printer would print two layers for it. Then, the rest of the awning came in and bridging settings kicked with ample parts to “bridge to”

Awning Hack

Textures
There are other approaches you can do with textures. You can, for example, use a grey scale texture map and use the Distortion modifier. I have found that to be a little intensive on my machine resources and making it difficult to continue to the tweak the model.

Textures - Laying Out

I do have a few “textures” I add to these models — stonework, brickwork, shingles, and finally siding. These I believe are mostly 0.3mm high. The Stonework I did slightly as purist. I actually used Bezier Curves to trace out real stones from one of the historic buildings in my town (Note– there are many ways to skin this cat). For bricks, siding, and shingles, I modeled one piece and then used the Array Feature in Blender to make an entire sheet.

Remember with the Spinning Pokestop, I talked about the Power of Intersection? This is an example of that. By Duplicating key vertices and separating them, I would make a template of the part of the model I wanted texture for. Let’s take the front of my Rockledge Mansion. I wouldn’t want Stonework where the windows and doors were. So I make an object of just want I want textured.

Texturing Template

I put my textured piece, in this case, the Stonework in the middle of it and then I take an Intersetion. Viola! Texture.

Textures - Intersection

Texture Piece

And just like my other details, I make sure that is flush exactly with my base model, so it slices nice and fine in Simplify 3D.

Hack – Use Layer Lines To Your Advantage
I had been doing shingles for everything… until my very last model, my Neighbor’s House. I was doing a “Slice As You Go” and I noticed, the natural layer lines looked remarkably like shingles, so I rolled with it.

Layer Line Shingles - FinalLayer Line Shingles -Small

Making an SVG File 3D In Blender

Despite some earlier blog posts on the matter, I have become fond of using Inkscape to make SVG files for my 3D Models.  (My breakthrough came when I started saving as a “Plain SVG” format instead of an “Inkscape SVG” format).

I figured I should document my process at pulling and prepping those files in Blender.

  1. Import the SVG file.  File->Import->Scalable Vector Graphics (.svg)IMport SVG
  2. It looks like nothing happened, but your SVG is there.  It’s just really really really small.  If you look to the right in your Objects listing, you can see a new “Curve” that was not there before.
    SVG Tiny
  3. Resize the object so you can see it better.
    Resize
  4. Sometimes resizing it takes it off the screen and the Object’s Origin is not very intuitive  For that, I change the Object’s Origin to the Center of the Mass.  I do that by going to Object->Transform->Center of Mass
    Object Transform Origin to 3D Cursor
  5. Then I can change all the Transform coordinates to 0,0,0 to center my new SVG
    PUt ot 0 0 0
  6. SVGs pull in as Curves.  You’ll want to convert it to a Mesh before doing anything with it.  You can do that by going to Object->Convert to->Mesh from Curve/Meta/Serf/Text
    Convert To Mesh
  7. OPTIONAL – Get Rid of Black Color
    When I was new to Blender and Inkscape, I could not figure out why my Inkscape SVGs were all black… and I just did not know enough to find the right keywords to Google.  Later when I learned about Materials, it will started to click.  The SVGs import in with a Default Material.  If you want to get rid of that, click on the Materials icon for your object, click on the black material and hit to get rid of it.
    Getting Rid of Black
  8. With your newly converted Mesh selected, switch to Edit mode.Switch to Edit Mode
  9. Click A to select all vertices.
  10. Go to Extrude->Region to give your 2D Object some Depth.  If you can you the mouse to size or type in a measurement– for example 0.5 for 0.5mm.Extrude Region
  11. And then you have a 3D Object in Blender from an SVG file.3D Object

Wishing You Many Fails in 2017!

When we are pushing the limits, we are going to encounter fails. But through failure comes knowledge and at times, it even brings about extra creativity. On that note, I hope 2017 brings you many fails!

In December, I did a last minute contribution to the A Pyro Design Maker Coin Holiday Tree. In my coin, I wanted to celebrate the failures that comes along with learning 3D Printing. I call it, “From Failure Comes Knowledge“. This video details the inspirations behind the coin, a little taste of the modeling in Blender, and the [embarrassing] two fails I had printing it.

The From Failure Comes Knowledge Coin on Thingiverse:
http://www.thingiverse.com/thing:1936616/

Check the makers who have already made the coin!

Jim at Another 3D Printing Channel https://www.youtube.com/channel/UCgXpTIrI0KK8_wXMcHLA1fw

Matt at How I Do It https://www.youtube.com/channel/UCJTkCgyQbUU2kpiwhrbLK_A

And of course, Travis and Heather at A Pyro Design
https://www.youtube.com/c/Apyrodesign

Other Models Mentioned in the Video:
The famous 3D Benchy
http://www.thingiverse.com/thing:763622

Drooloop Flowers http://www.thingiverse.com/thing:240158
Furry Vase http://www.thingiverse.com/thing:1800503
Furry Christmas Tree http://www.thingiverse.com/thing:1941557

Thank you so much for watching. Have a fantastic 2017!

Using Inkscape and Tinkercad to Customize Halloween Pendants

HAPPY HALLOWEEN!

My very first Thingiverse upload was glowing pumpkin pendants/pins for kids.  This video hits briefly on how I print these via Multi-processes in Simplify3D (Spoiler alert – they are three separate prints).  It will also show you how you can import in the pendant template into TinkerCAD and quickly make your own customizations.  Finally, have a drawing you want to use?  I’ll go over using Inkscape to make a SVG file from a black and white image/photo/scan that you can also pull into TinkerCAD to “carve” your pumpkin.
All the pumpkin models, including the template are up on Thingiverse at:
http://www.thingiverse.com/thing:1074202
Need help with Simplify3D Multiple Processes?  I learned from THIS Joel Telling video:
https://youtu.be/ZHe2_h1nQG4
TinkerCAD is free with nothing to install– http://www.tinkercad.com
Finally, Inkscape is also free and can be downloaded at http://www.inkscape.org.
The Starting and Stopping Points of My Processes
0 – 1.5mm – Black or Green
1.5 – 2mm – GlowFill
2mm – rest – Orange

What in the World Has Vicky Been Up To?!!?

I’m back with 3D Printings after a bit of a hiatus and I have a lot to catch you up on!

Printed Solid Grand Opening!
A freaking wonderful, invigorating event. Joel Telling’s overview of the event can be found at https://www.youtube.com/watch?v=qnZqMnokjpw

What does TGAW stand for? That is answered in Joel’s interview with me:
https://www.youtube.com/watch?v=REvIWbER_Gc

Anglerfish
Blog post with more details on the creation of my bronzeFill/GlowFill Anglerfish. I do have one more if you happen to covet one. 😉
http://tgaw.com/wp/?p=307

Bow Ties!
I’ll work on a video about their design in Blender and the attachment design in OpenSCAD. It’ll use words like “Texture”, “Baking”, “Displacement Maps” and “Boolean Intersection”. In the meantime, I do have some listed on Etsy at https://www.etsy.com/shop/VickyTGAW

Land’s End Gazebo
The real live gazebo in Sayville, NY can be found here http://www.landsendweddings.com/

Geocoin
Check out the AMAZING family I am designing for. You couldn’t get better inspiration than that!
https://www.youtube.com/watch?v=znnSSlJF79w

Make Your Empty Filament Spools into a Shelf
As promised, the model is up on Thingiverse as well as the original OpenSCAD code.
http://www.thingiverse.com/thing:1677024

Print in Place Gyro Cube!
Wanna beta test my version of the Gyro Cube on YOUR printer? Lemme know!

Thanks for watching! Happy Printing!

Embedding Mirrors Into Prints with Simplify3D

My sister turned 40 this month and get this– I have never, ever, ever printed her anything. I printed something for her husband, but not her. Bad Vicky! That definitely needed to change. Her house is a very visually stimulating house. They have a variety of lighting and effects– think blacklights, giant flatscreens with screensavers dancing to the music, lasers making patterns on the walls, lava lamps. I wanted my design to fit in and interact with the lighting in her house. I wanted something with mirrors.

Designing
At Michael’s I bought little mosaic mirrors– 35 of them for $1.99.

3D Printing Mosiac Mirror Tiles

Then I got out the trusty calipers. There was some variance in the measurements, but the mirrors were pretty much 15 millimeters by 15 millimeters and 1.75 thick. I designed in cavities into my model for the placement of the mirrors. I used 0.5 millimeter clearance– which meant my “hole” came out to 16 x 16 millimeters and 2.25 thick.

All my design work was in Blender. I decided my design was going to built out of a series of 18 x 18 millimeters squares– each ready to hold a mirror. I used some simple math to figure out how many mirrors I would need to be a good stand for a 3″ pillar LED candle and the ultimate radius of my final product.

3D Printing - MATH!

I made one template square and put in the proper placement of where it would be in the final holder. Another simple math equation told me how many degrees I would have to angle each piece.

360 degrees / # of Mirrors

So for example, in a design with 15 mirrors, each piece would be angled 24 degrees from the previous one. If I did 14 mirrors, each piece would be angled 25.714 from each other.

In Blender, when you rotate items, you are rotating around the Point of Origin of that object (where the little yellow dot appears when you select the Object).

Usually this is the Center of Mass of the object, but guess what! You can control it and the origin doesn’t have to be in the object itself. Once I had my template square in its proper position in the final candle holder, I placed my 3D Cursor at 0,0,0.

Blender - Setting 3D Cursor

I went to Object->Transform->Origin to 3D Cursor.

Blender - Origin to 3D Cursor

This meant the origin was right smack in the middle of my candle holder. It also meant, when I rotate, I rotate around that point.

So I proceeded to Duplicate the square, hit R (for Rotate), hit Z (for around the Z axis) and then type in my angle (25.714).

Blender - Rotate 25.714 along Z Axis

I would then Duplicate that square and Rotate it and so on until I had my entire ring. I did Object->Join to merge all my panel pieces into a single object.

Blender - Object Join

I switched to Edit mode and did some cleanup. I Merged Vertices that were close together and then added in new Faces to fill in the gap.

Blender - Vertices Cleanup

Blender - Filler Faces

The inside of the candle holder is a 14-sided Cylinder. When you add a new Cylinder, you can specify the Number of Sides. I made it match the number of mirrors.

Blender - Inside Cylinder - 14 Sides

I cheated with the placement of the three feet. I added a 3-sided Circle and used that to help me determine where the place my feet.

Blender - 3D Sided Circle To Help with Foot Placement

Under Modifiers I did a Boolean Union on my panel piece, my inside cylinder and my feet and voila– I had a model!

Slicing – Simplify3D
In Simplify3D, I set up two separate processes. The first process ran from the 0.00mm – 17.00mm (You can set that up in the Advanced tab under Layer Modifications). That is the point right before my mirror cavities would get sealed up.

3D Printing with Mirrors - Simplify 3D - Layer Modification Settings for the Bottom

Usually when a process finishes, it’ll run a default ending process– turning off the extruder and disabling the motors, completely dropping the bed. I didn’t want that to happen. In this case, I just wanted the bed to drop down enough for me to put those mirrors in without burning myself and more importantly, get that hot nozzle off my print so it isn’t melting and deforming it and making it hard for me to slide my mirrors in. I went under Scripts and customized my Ending Script. Instead of the usual process, I did two simple steps:

1) I changed it to Relative mode, so my next instruction would use the nozzle’s current position as it’s starting point
2) I told it to move the nozzle up 100mm.

G91 ; relative mode
G1 Z100 ; lift 100mm

3D Printing with Mirrors - Simplify 3D - Ending Script for Bottom

When I prepared just that process for printing, you could see how it was going to stop while I still had openings for my mirrors.

3D Printing with Mirrors - Simplify 3D - Selecting the First Process

3D Printing with Mirrors - Simplify 3D - Preview of First Process

My second process was set up to run from 17.10mm on (again under the Advanced tab)
3D Printing with Mirrors - Simplify 3D - Layer Modification Settings for the Second Process

When a process begins, there are a number of things the printer typically does at the beginning such as turning on the extruder, turning on the fans, homing the axis’s, running off the side of the bed and oozing some filament. I didn’t want to do this for my second process. My axis’s are already homed, my extruder is already heated up, my filament is already flowing. All I had to do was set my printer back to Absolute mode and go. So for this second process, I went under Scripts and customized the Starting Script.

G90 ; absolute mode

3D Printing with Mirrors - Simplify 3D - Starting Script for Second Process

A preview of the second process, illustrates how the mirrors will get sealed in by the print.

3D Printing with Mirrors - Simplify 3D - Preview of Second Process

The process worked out fantastically (Watch it in Action in the YouTube video above– starting at about 7 minutes in).

All in all I did three different designs for my sister.

3D Printing - Embedding Mirrors in Prints

I loved the final product so much I had to make another for myself.

3D Printing with Embedded Mirrors - Heart and Reflection

They ended up looking fantastic stacked. My sister used them as a platform for her Venom action figure. : )

3D Printing - Venon is Victorious on the Mirrored Candle Holders

Personalized Glowing Valentines for Kids

My son is named Sagan, after Carl Sagan.  Over here in the U.S., that’s a unique name.  As a result, he won’t be going into gas stations or souvenir shops and finding mass produced keychains and trinkets with his name on it.

Luckily, I have the MakerGear M2. I am not bound to get what someone else has decided to design and make.  I can make it myself!

3D Printing Valentines - Sagan

In my son’s pre-K class, a vast majority of the students are in the same boat– most of them have unique names. This seemed like a great use for the flexibility of a 3D Printer.

The Design
The design is not especially ground breaking. Hey, it’s a little heart pendant/medallion with a name on it. I printed most of it in ColorFabb Traffic Red PLA/PHA (duh) and then the detailing and the name are in GlowFill. One thing I have noticed with my kids is they LOVE glowing things. They love taking it into the bathroom and turning off the lights to see it glow.

Glowing Valentines

Modeling – Blender
The base model I did in Blender. I started with a Bezier Curve. I used the Mirror modifier to make it symmetrical.

Modeling a Heart - Bezier Curve - Mirror

I converted the curve to a Mesh. Modeling a Heart - Convert to Object

I did a little cleanup of the Vertices, by Merging a couple of oddly mirrored vertices to the center.
Modeling a Heart - Merge Vertices at Center

The detailing of my design, I wanted an outline of a heart in GlowFill. I’ve worked with hearts in the past and I knew that just scaling another heart down wasn’t going to do the trick. Inset is key to that!
MOdeling a Heart - Scale VersusInset
Scaling Versus Inset – Inset Will Give You Consistent Widths

I did an Inset of my face and did some manual cleanup of the vertices.

After that, it was just straight Extrusion to the heights I wanted.

The hook was just a cylinder subtracted from another cylinder (courtesy of the Boolean Modifier). I decided to keep the hook separate in case anyone wanted to print just straight up hearts.

At the end of my Blender session– I had two .STL files — my heart and my hook to make it a medallion.

Modeling – OpenSCAD
Although I had experimented with Python scripting for Blender roughly a year ago, OpenSCAD seemed easier and quicker for me. There is an Import command in OpenSCAD where you can pull in STL files. I went ahead and brought my Blender STL files into my OpenSCAD project and set a variable name for the “Child’s Name”. I was then able to rapidly run through and create 17 models for all my son’s classmates.

child_name = "Adela";
font_size=10;
y_offset=-4;

union()
{
 translate([30,10,0])
   import("heart.stl", convexity=10);

  
 translate([30,10,0])
  import("hook.stl", convexity=10);  


translate([30,y_offset,2])
linear_extrude(height=0.7)
    text(child_name, halign="center", size=font_size);
}

 

Slicing and Printing – Simplify3D and MakerGear M2
I printed on my trusty MakerGear M2. Since I have a single extruder machine, I used Simplify3D to set up two processes to print my heart:

Red
From 0.0 – 1.0mm, I printed in ColorFabb Traffic Red PLA/PHA. I printed in 0.25mm layer heights.
Slicing a Heart - First Process in Simplify3D

GlowFill
From 1.1 – 1.7mm, I printed in ColorFabb GlowFill. I printed those in 0.10mm heights. Usually I have found with detailing 3 or 4 layers were sufficient. In this case, because the GlowFill was a little translucent, going up to 6 and 7 layers made sure the text appeared more crisp and white. (It also gave me a little more leeway to recover if an edge came unstuck from the build plate).
Slicing a Heart - Second Process in Simplify3D

Quick Tip
And a quick tip. Sometimes parenting is harder than 3D Printing. When I printed my first batch of hearts, I was quite pleased. I showed my son and was ready for a positive response. It did not go well. I..uh… I kinda didn’t include his name in the first batch of hearts. He can read and he was quite miffed when he did not see his name. Luckily, I started an emergency print and was able to get back on his good side. But you can avoid such drama. Make sure to print your kids’ in the first batch. : )

Forgiven

On Thingiverse!
If you covet a heart for Valentine’s Day or a special occasion, I was able to make a Customizer on Thingiverse. Feel free to make your own.

Modeling Diary – Occoquan’s Mill House Museum

After the Occoquan Arts and Craft Fair, I was approached by the Occoquan Business Guild. This holiday season the Virginia Governor’s Mansion is celebrating Virginia’s localities. They invited counties, cities, and towns throughout the state to design an ornament for tree. I was asked to design the Christmas Ornament representing Occoquan!

Originally we discussed a replica of the old Ellicott Mill which was the very first automated mill in Virginia. But, the Mill looked to be particularly ambitious in the timeframe (end of October). So we ultimately decided to do an ornament based on the Mill House, which is a structure that still stands today and is home to Occoquan’s Mill House Museum. The Mill House’s shape seemed like it would aesthetically make a better ornament.

This structure also has an emotional connection to me and my family. My maternal grandmother worked at the Mill House Museum for many years.

I did some sketches and settled on a pretty literal translation of the Mill House. Since the Mill House is a stone structure, I recommended the final print be in Shapeways’ Full Color Sandstone. I felt its stone-like finish would be perfect for the ornament.

3D Printing - Mill House Museum  Original Sketch

Modeling – Base Structure and Details
For modeling, I used some reference photos I took of the building.

Mill House Reference - Front

Mill House Reference - Mill Side

The side of the mill with the chimney was tight for me to get pictures, so for that side I also used a reference photo I took of a model by former Council Member Dr. Walbert.

SMALL Mill House - Chimney Referene

One of the key features I wanted on the ornament was an old Mill Stone laying on the building. For that, I referred to good ole Wikipedia and its article on millstones!

Modeling – Mill House
I did all my work in the free modeling software Blender. The base model, the windows, the door, the brick trim above the windows and the chimney shape all went quickly and were pretty much done with cubes and basic mesh modeling.

3D Printing - Occoquan Mill House Museum -Mill House Start

Modeling – Physical Textures
And then I had the tricky part. The stone work and the brick work. Now, because we were planning on Full Color Sandstone, I did have the option of doing a UV Map and doing that details just through the colors. But I decided, I really wanted those textures to be actual textures. If we wanted to print the model in bronzeFill or plastic, I wanted the details to translate. I briefly researched Displacement Maps, but with the time clock ticking, I went with an approach I was more comfortable with. (One day I may look back and think, “Dude- you did this the HARD way!”)

All my physical textures I went with a height of 0.5mm. I have found 0.5mm details look good on my MakerGear M2– it’s big enough for the detail to be distinctive, but small enough that the printer doesn’t struggle with overhangs.

Modeling – Bricks
Bricks– I made a small cube as a brick and then used the Array Modifier to make a line of evenly spaced bricks.

3D Printing - Occoquan Mill House Museum -Screenshot - Brickwork

After I applied that Array Modifier, I did another! I made one row and offset it a little bit to get the stratified effect of two rows of bricks.

3D Printing - Occoquan Mill House Museum -Screenshot - Brickwork 2

Finally I used the Array Modifier one more time to make a big sheet of bricks!

3D Printing - Occoquan Mill House Museum -Screenshot - Brickwork 3

Modeling – Stones
For the stone work, I was partially a purist. I pulled up a new Blender project and traced out some of the real stones of the Mill House in Bezier Curves. And once I had a good selection, I used that mini sheet of stones to make bigger sheets.

3D Printing - Occoquan Mill House Museum -Screenshot - Stone Work

Modeling – Fitting the Brick and Stonework
To fit my stonework and brick work to the actual Mill House, I made little templates of the sides I wanted to work with. I started by making a template of the side I wanted the texture for. This would include window and detail cut outs where I did not want stone or brick. This took me a while to find a process I liked. I finally ended up with ended duplicating any pertinent vertices.

3D Printing - Mill House - Duplicate Vertices

Then I separated them into their own object by going to Mesh->Vertices->Separate->Selection.

3D Printing - Mill House - Seperate Vertices

I sometimes had to repeat with other objects (such as windows).

Once I had all the relevant vertices, I made a new face of what I wanted stonework for. From there, I used the Boolean Modifier and Intersection to cut my sheet of stonework into…a specifically shaped sheet of stonework.

3D Printing - Occoquan Mill House Museum -Screenshot - Intersection

And I ended up with my final textured piece that I could overlay over my Mill House.

3D Printing - Occoquan Mill House Museum -Screenshot - Intersection Aftermath

Modeling – Colors
With the Mill House, I didn’t have to create a UV Map for my coloring. I was able to do it all by the Materials tab for my objects.

3D Printing - Occoquan Mill House Museum -Colors

In a couple of spots, I assigned a different material to specific faces (like grooves in the Mill Stone)

3D Printing - Occoquan Mill House Museum -Color Faces

Modeling – Hollowing
To save on material cost I did hollow out my Mill House. It was an easy process– I Inset the bottom face and Extruded up.

Renders and Rework
Originally I did my shingles with an Subdivide, Inset and Extrude technique. It looked fabulous in my Mamie Davis Gazebo Ornament, but I did not like it in my Mill House renders.

3D Printing - Occoquan Mill House Museum - Sandstone Render

I went back and redid the shingles the way I did the bricks (so they were staggered).

3D Printing - Occoquan Mill House Museum - Sandstone Render - New Shingles

I met with my contacts and gave them a tour of the model and the renders and they loved it! The only tweak they had was to add a doorknob.

“That’s it!” I yelled enthusiastically!

The door had been bothering me all week. It just did not look right. As soon as they said doorknob– I knew that was it. That was the missing piece.

3D Printing - Occoquan Mill House Museum - Reshingled - Final

Test Prints
One of my concerns was the balance of the ornament would be off or that once printed, I wouldn’t be fond of the size I chose. So I did a test print on the Maker Gear M2. And….. I was in love. Even though my printer did not pick up the window panes and I noticed a few minor issues, I was impressed at how great all the detailing came out on my printer. I am so glad I went to the trouble to make that stonework and brick work physical details instead of just colors. As for balance– it balanced perfectly!

3D Printing - Occoquan's Mill House Museum - Test Print in White - It Balances

And for fun, I also did a version for myself in ColorFabb bronzeFill.

3D Printing - BronzeFill Mill House Museum From the M2

Final Print
My final print came out a little darker than I expected, but still very identifable as the Mill House. The most important part– the “customer” was thrilled! Phew!

Mill House - Top

And Now…
And now the ornament makes it way to the Virginia Governor’s Mansion! Exciting!

Carving My Pumpkins In Blender

We’ve done a number of faces now for my Glowing Pumpkin Pendants for the Fall Occoquan Arts and Craft Show. I thought I would go ahead and document my carving process in Blender.

Quick background– with the pumpkins, I print 1.5mm of ColorFabb Green. I next switch over the ColorFabb GlowFill for another 1mm. Finally, I end with Translucent Orange filament from MakerGear.

Cross Section of Pumpkin

What this all means is whatever face I’m using to carve out of my pumpkin template (be it through OpenSCAD, Inkscape, ShapeJS, or any other means)– I want the bottom to be right at the 2.5 mm mark. I want the hole to extend all the way down through the orange to the top of my GlowFill.

Although, not intuitive, this is pretty easy in Blender.

First I import my face (in .STL format) from the File->Import menu option. If necessary, I resize it to fit more appropriately on the pumpkin. Now the fun part– what’s the easiest way for me to make sure my face carving goes all the way to the 2.5mm mark?

  1. I switch to Edit mode.
  2. I click on one of the vertices that is at the bottom of my face.
  3. I go to Mesh->Snap->Cursor to Selected
    Blender - Positioning
    This moves my 3D cursor to that selected vertex.
  4. I switch to Object mode
  5. I go to Object->Transform->Origin to 3D Cursor
    Blender - Changing Origin
    This makes the point of reference for that object that very same vertex. This means when I am filling in coordinates for that object, it is using that vertex for the placement.
  6. Finally, at this point, I just change the Z position of my object (assuming I’m on Global) to 2.5mm.

    Blender - Setting Exact Coordinates

And there you have it— the bottom of my face I wish to carve out of the pumpkin is down at the 2.5mm mark, the top of my GlowFill layer. At this point, I can proceed with going to the Modifiers, adding a Boolean modifier and doing a Difference Operation on my pumpkin template and my face. (The difference allows me to subtract an object from another object).

Just to be sure, I do double check in Simplify3D that my orange process looks we expected. In particular, I don’t want to see a solid layer of orange covering up my GlowFill.

Simplify3D - Previewing Orange Layers

I haven’t had any trouble with ShapeJS and my Black and White PNG images. However, if I were ever to be concerned my pumpkin face did not have an even bottom, I could make sure the bottom was consistent by:

  1. Go into Edit mode
  2. Select all the vertices on the bottom of my face (I typically take advantage of Select->Border Select)
  3. Hit S (for Scale) and then Z for the Z-axis and then 0. This sets ALL the selected vertices to the exact same Z height, so I’m thoroughly ensured if one vertex is at 2.5mm, they all are.
    Blender - S Z 0

And there you have it— how I carve my pumpkins (for now).

Print Diary – July 28, 2015 – Spinus Tristis…. and an Ass-Kicking Danaus plexippus

Greetings! I’m currently prepping for a business trip, so this will be a quick entry.

American Goldfinch
I have a new 3D Printed bird to my collection. Spinus tristis, otherwise known as the American Goldfinch.

3D Printed Birds - Spinus tristis (American Goldfinch)

He’s my second favorite bird at the moment. I’m thinking of simplifying the white patches on his wings to make him match my FIRST favorite bird from the MakerGear M2– the Baltimore Oriole.

I’m getting quite a collection of little birds. : )

3D Printed Birds - Goldfinches and Orioles

Gah – Monarch Butterfly
I had this grand idea to do a Monarch Butterfly– it has the same color scheme as the orioles so I figured I could print them together. I stumbled upon a lovely Public Domain model by Liz Havlin. LOVE. It is exactly what I was envisioning, only prettier!

I thought I would just update the model a bit, to solidify the back and then add different face heights for my orange and white layers. Easy, right?

Well….

It’s been kicking my ass. And it’s not Liz’s model– her work is perfect, water-tight, non-manifold. I’ve been introducing issues to it when I add and extrude new faces. Gah. I will be victorious… just not tonight. : (